近场增强相关论文
在科学技术飞速发展的21世纪,人们对自然的认识已延伸到微观的领域。随着微细加工技术和集成光学的不断进步,光学元器件不断小型化......
与传统的光伏电池完全不同,太阳能整流天线的原理是基于光的波动性,利用光学天线接收太阳辐射,然后再由光频整流器将交流电转化为......
表面等离激元是一种光激发下材料表面的自由电子集体振荡效应。自上个世纪六十年代发现表面等离激元现象以来相关的研究已经逐渐成......
太赫兹科学技术在生物科学、高灵敏度传感器、宽带通信和机场安检等诸多领域有着十分重要的应用前景,吸引着广大科研工作者的强烈......
在无外场时,自由电子杂乱无序的分布在金属导体内部。若给导体加上外电场,无序的自由电子就会在静电力的作用下朝着统一的方向移动......
目前器件的小型化是生物医疗、机械电子以及国防科技等领域发展的必然趋势,如何实现超过激光光学衍射极限的纳米结构制备是当前的......
薄膜太阳能电池具有制造成本低,载流子的体复合较小的优点,但是由于其厚度只有几百纳米到几微米,不能有效利用半导体近带隙附近的......
近年来,随着计算机技术、纳米科学技术与表面等离基元光学的兴起,金属纳米结构与光相互作用呈现出的各种新特性,如近场增强、非线......
半导体性单壁碳纳米管是直接带隙的准一维半导体材料,具有很好的电学和光电特性,体现为高的载流子迁移率、带隙随直径可调、红外波段......
纳米光学天线一般是指金属纳米颗粒及其相同结构的不同组合构成,通过调节金属纳米颗粒的结构和参数可实现对光频场约束、场增强或重......
金属纳米结构的局域表面等离子体共振(LSPR)因在许多领域具有潜在的应用价值而备受研究者的关注。传感特性和近场增强特性是LSPR的......
低维纳米体系中的等离激元具有独特的光学性质(表面受限、静场增强),无论是在信息、化学、生物、能源等领域都有着广泛的应用。等离激......
局域表面等离子共振不仅可以扩宽材料的光谱响应范围,还可以增强局部电场从而使待测分子的拉曼信号增强,在生命科学领域发挥着重要......
等离激元具有超衍射极限汇聚,极高的近场增强强度等特点,受到广泛的关注并应用。纳米结构中等离激元的近场分布与近场强度在很大程......
随着纳米加工技术的发展,对加工精度的要求日益提高。利用飞秒激光照射纳米小球,可以在待加工基底表面产生局域的近场增强,进而实......
基于贵金属纳米结构的表面等离子效应,特别是近场增强效应,因其在光电探测、光伏器件、生物传感等领域具有巨大的应用潜力而成为当......
热辐射作为一种无处不在的物理现象,对于科学研究和工程应用都具有重要意义.传统上对热辐射的理解主要是基于普朗克定律,它描述了......
金属纳米结构的表面等离子体的耦合可以产生巨大的局域电场增强。作为表面等离子体光子学领域最引人注目的现象之一,近场增强是许......
本文采用时域有限差分方法仿真研究了金粒子在金属(金),半导体(硅)和电介质(二氧化硅)基底表面经飞秒激光激发后的近场(电场)特性......
随着我国经济发展的转型和对能源的需求的加大,发展清洁的、可再生的能源迫在眉睫。众所周知,人类生产所带来的污染使得地球环境每......
局域表面等离子体共振(LSPR)是光照射金属纳米粒子而引起金属内的自由电子发生集体共振使粒子周围的近场增强。将LSPR应用于太阳能......
期刊
研究了在三开口劈裂金属纳米环中,当入射场偏振方向不同时出现的多极局域表面等离激元共振现象及折射率传感特性。研究表明,当入射......
期刊
表面等离子体激元(SPPs)具有高度局域化和近场增强的特性,能突破光的衍射极限。正因为SPPs这种独特的性质,科研人员对此进行了广泛......